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Abstract

Guidance laws are developed to optimally position a relay Micro-UAV (MAV) to
provide an operator at the base with real-time Intelligence, Surveillance, and
Reconnaissance (ISR) by relaying communication and video signals when the rover
MAYV performing the ISR mission is out of radio contact range with the base. The ISR
system is comprised of two MAVSs, the Relay and the Rover, and a Base. The Relay
strives to minimize the radio frequency (RF) power required for maintaining
communications, while the Rover performs the ISR mission, which may maximize the
required RF power. The optimal control of the Relay MAV entails the solution of a
differential game. Suboptimal solutions are also analyzed to gain insight into the solution
of the differential game. One suboptimal approach investigated envisages the Rover to
momentarily remain stationary and solves for the optimal path for the Relay to minimize
the RF power requirement during the planning horizon: the one — sided optimal control
problem is solved in closed form. Another suboptimal approach is based upon the
geometry of the system: The midpoint between the Rover and the Base is the location
which minimizes the RF power required, so the Relay heads toward that point—assuming
that the Rover is stationary. At the same time, to maximize the required RF power, the
Rover runs away from the Relay. In this work the differential game is fully analyzed. The
geometry based suboptimal solution is shown to be the optimal solution in the endgame.

Isaac’s method is then applied to obtain the optimal trajectories in the differential game.
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A RELAY-ROVER DIFFERENTIAL GAME

. Introduction

I.1. Background

Unmanned Aerial Vehicles (UAVSs) are prevalent in current military operations.
UAVs vary in size and mission. While some UAVs are the same size as aircraft, others
are man-portable and can be carried in a backpack. These man-portable Micro-UAVs
(MAVs) utilized by small tactical units are not supported by satellite communications and
use radio frequency (RF) modems. High frequency radio communications are range
limited. The MAVs considered in this paper are utilized for Intelligence, Surveillance and

Reconnaissance (ISR) and will therefore be referred to as ISR MAVSs or as Rovers [1].

The Base may lose communication (and controllability) with deployed ISR
MAVs/Rovers if the Rovers stray far away. In this thesis guidance laws are developed to
optimally position a Relay MAYV to provide the operator at the Base with real-time ISR
by relaying communication and sensor data while allowing for extended range Rover
operations. The Relay-Rover interaction is modeled as a differential game whose solution

yields the optimal Relay strategy.

1.2. Research Objectives
The ISR mission is considered where a rover MAV is controlled by an operator
and tasked to fly to locations where targets need to be inspected. Since the rover MAV

might get out of radio communication range with the base station where the operator is



located, it is envisaged that a relay MAV will be interposed between the rover and the
base station, so that connectivity will be maintained.

In order to reduce the workload of the operator, the relay MAV will be
autonomous. In other words, a guidance law for the relay MAV will be developed such
that the relay MAV will automatically position itself between the rover and the base, with
a view to reducing the RF power required for communications — this, despite the
maneuvers of the rover. The worst case scenario is considered, where the rover is “giving
a hard time” to the relay MAV. This calls for a min—max optimal control formulation, a

differential game formulation.



Il. Literature Review

To better appreciate the nature of the thesis research, it is necessary to first
discuss previous relevant works. Recent studies have produced two general designs for a
reliable and robust communication network utilizing mobile communication nodes. The first
design consists of one or more mobile communication nodes which form a single chain to
relay information between the source and the destination. This is referred to as a “single-flow
network.” Many designs for single-flow networks use a fixed source and fixed destination,
though they do not discount the possibility of a mobile destination (Dixon and Frew, 2007;
Goldenberg et al., 2004). The second design consists of multiple mobile communication
nodes which form a “mesh-like network™. This configuration adds fault-tolerance for a more
robust network (Basu and Redi, 2004; Floreano et al., 2007). However, a “mesh-like
network” would be ill suited for the envisioned ISR and engagement system due to desired
unit covertness while engaging a high value target. In this respect, Brown et al. have
developed the Ad-hoc UAV Ground Network (AUGNet) test bed, showing the practicality of
UAV-based mobile communication nodes using IEEE 802.11b wireless routers (Brown et al.,
2004). The proposed ISR and engagement system may have a network design similar to
AUGNet but the Relay must still have an optimal mobility control law in order optimize
network communications.

Dixon and Frew have utilized the AUGNet system with an extremum seeking
controller to study cooperative electronic chaining while maximizing the signal-to-noise ratio
between the nodes of the multi-hop network (Dixon and Frew, 2007). Goldenberg et al. have

shown that communication nodes should be evenly spaced on the line between the source and



destination in order to minimize the energy cost of communicating between the two
(Goldenberg et al., 2004).

This line of research was initiated by Lt. John H. Hansen in 2008, in his thesis
‘Optimal Guidance of A Relay MAV for ISR Support Beyond Line-Of-Sight’[7]. In this
thesis, the basic system definition from his work will be introduced again and used for
further research. Additional work, including limited experimentation and hardware
testing was done by the students of Dr. David R. Jacques.

Building on these foundations, in this thesis the underlying differential game

theory is further developed.

I1.1. System Definition

It is assumed that the rElay (E) MAV is cognizant of the rOver’s (O)
instantaneous position and, obviously, own ship position. As far as the RF power
requirements are concerned, this is determined by their distance from the Base (B) and
the rOver-rElay separation. Thus, the state is the distance rg of the rElay from the Base,
the distance ro of the rOver to the Base, and the angle & included between the radials
from the Base to the rElay and the rOver. This angle is measured clockwise. The MAVs
have simple motion. The control for each MAV is its relative heading angle measured
clock-wise from its radial from the Base. Figure 1 provides a visualization of the

kinematics. The differential equations of motion are

. =V cosg , 1:(0) = Ie,
fo =Vo COSY , 1,(0) =15, )
6=LV,siny —LV.sing , 0(0)=6,, 0<t<T



T is the planning horizon utilized by the control algorithm. The cost functional is
indicative of the RF power required and is the time averaged sum of the squares of the

distance between the rElay and the rOver and between the rElay and the Base:

y= j;(ﬁ)z(mﬁz(t))dt

Figure 1: Schematic of Relay System

The points E, B and O in R? represent the positions of the rElay, Base and rOver

respectively. These three points form a triangle which can be utilized to calculate the

distance EO by the law of cosines.
TOZY _ 2, 2
EO (t) =r¢ +15 —2r.1, cosd

Hence the cost functional is



y:j;(2r§+r02—2rEro cos 6 dt )

The objective is to minimize the average RF power required for maintaining
communications. The control available to accomplish this task is limited to setting the
course angle ¢ of the rElay, while the rOver performs the ISR mission: in a worst case
scenario, one might assume that the rOver is working to maximize the cost functional.
The optimization problem is then a differential game [2] where the rElay’s control is its

relative heading ¢ and the rOver’s control is its relative heading w.

The system is analyzed by first non-dimensionalizing the states and the
parameters. The velocities are scaled by the velocity of the rElay (Vg), yielding a non-

dimensional speed ratio «. The distances are scaled by d, where d is a characteristic

r rr V Vv .
length, say d=V.T. Set r. ::FE’ r,=-2, t:=FE~t, T:=FE-T and the speed ratio
(ZE\\%. Using these non-dimensional variables and parameters, the two sided

E

optimization problem now becomes

minmaxy = L)T(Zr,z2 +13 = 21,1, cos 0 dit

4 v
st.
f. =C0S¢@ , 1:(0) = I, (3)
I, = COSy , ,(0) =15,

O=Lasing -Lsing, 6(0)=6, 0<t<T

e

The problem parameters are the speed ratio « >0 and the planning horizon T >0.



Since the optimal control problem only makes sense if the rOver is closer to the

rElay than to the Base (B), the following must hold.

I <2r,c0s6.

Thus, since the problem is symmetric about the 8 = 0axis, the state space is
T
{(rE, r,,0)[0< <2, 01 <21, cose}
To solve the differential game, the Hamiltonian is introduced in eq. (4),
I =21 — 15 + 211, C0S 0+ A,_COS@+A_aCosy + 4, (%asint/x—ésin go) (4)

where 2, 4, and 4, are the system co-states.

According to the Pontryagin Maximum Principle (PMP) [3], the differential

equations for the co-states are

/irE =4r_ - 2r, cose—l"szngo , A, (T)=0
E
j, =2 -2r.cosf+a 2V 5 (Ty=0 5)
o
/iH:ZrErosine , 4,(T)=0

and the optimality condition is given by max min C, namely
® v

rE
(6)

or,



- * /19 * rElrE
sing =-— , COS@ = (7)
/”trEerZ + A, /‘trEZrE2 + A,
a—Sﬁz—/lrozsm 1 202V
oy © Iy
= tanp*= 2 :
/1r0 ry
or,
. A . r,A
siny ™ =— 0 , cosy” = o b (8)
roz/lro2 +,° roleroz + A,

The second-order sufficiency condition for ¢ is

2 -
n
g SZC:—/‘Lr c03¢+m<0
op £ e

and inserting the expression for ¢* from (7) yields

(rE/I,E)2
ﬂ“&
= A4{t)<0VO0<t<T

Ay + <0

Similarly,

? A,08in
g gg =-1, acosw—M>0
oy © Iy

and inserting the expression for y* from (7) yields



A (©)

= A4{t) <0V O0<t<T
The expressions for ¢* and y* given in Equations (7) and (8) can also be used to
rewrite the state and co-state equations only in terms of the states and co-states. A

standard, albeit nonlinear, Two-Point Boundary Value Problem (TPBVP) on the interval t

= [0, T] is obtained:

A1
o= —— , r.(0)=r,
© A T
—aA T,
i =——02 ' ro(o):roO
JArS + 2
0= 2/192 2 02{/% 2 ' 0(0) =6,
AR+ A TR+ (10)
S _ar A _
A, =41 —2r,c080 + , A (T)=0
I\ JArE + 2
2
A =205 —2r, Y I — A, (T)=0
o\ A To + 2
Ay =2r.1,5in0 , A,(T)=0, 0<t<T

Note: if & 0, the costate 4,(t) <O VO<t<T;also (422 + 4] #0,

ﬂ/;térozwlj #0 VO<t<T,



I11. Methodology

I11.1. The End-Game

At time t=T where the co-states vanish, and since the control variables do not
explicitly feature in the cost functional, it is impossible to calculate the terminal controls
by applying the PMP and maximizing and minimizing the Hamiltonian (4); obviously,
equations (10) don’t apply because «Mirjm; =0. The end game requires special

attention.

Since the end state is free - that’s why the co-states vanish at t=T — the rElay’s
and rOver’s optimal strategies at t=T are myopic. Thus, from first principles, the rElay

would want the integrand in the cost functional
L(r.,r,,60) =2r.* +1,> —2r.r, cos @

to be minimized. Similarly, the rOver would want the integrand in the cost functional to
be maximized. However the control variables ¢ and ydo not directly feature in L.

Hence the rElay minimizes and the rOver maximizes the temporal derivative of L,

evaluated at t=T:

%L =2| 21, CoSp+al, COSy —I, COS@COSE —ar. COSy COSE+TI.Iysin H[aisim//—isin (pﬂ

o e

= 2{(2rE ~1, C056)C0s p 1, sin G sinp+a (1, -1, c0s6)cosy + 1, sin Gsin 1//]}
The rElay and rOver solve the respective static optimization problems
min[(2r, -1, cos#)cosp—1,sin 6 sing | (11)
4

10



and
max | (1, — I C0s@)cosy + 1. sindsiny | (12)
"4

Concerning eq. (11): minimizing in ¢ the derivative of the integrand at time t=T yields

the rElay’s optimal terminal control

o,

2 2
\/4rET +1, " —4r. 1, Coso;

cosé,. —2r, . r
T, sinp'(T) = =

2 2 ’
\/4rET +1, " —4rg I, Coso;

sin &,

cos(p'(T)) =

provided that r_, .

N 1
o, and @, ares.t. the following is not the case: I, =EroT and & =0.

Here, (rET T

0O ) denote the terminal state at time t=T.

When & =0, eq. (11) yields

An inspection of Fig. 2 tells us that in the end game, at time t=T, the rElay heads

toward the midpoint M of the segment BO.

11



Figure 2: End Game

Concerning eq. (12), maximizing in y the derivative of the integrand at time t=T yields

the rOver optimal terminal control

for  sin(y"(T)) =

2 2 2 2 ’
\/ e, "+, " —2r I, COS6; \/ re, " +1o, " —2rg I, COSO;

— I COSO; fe, SIN6;

cos(y(T)) =

provided that r._,r.

o, and @, ares.t. the following is not the case: r, =r. and 6, =0.

(o
When &, =0, eq. (12) yields

O if r, >r
. _ o ~ g
‘”m_{ﬁ it 1

o <Tg,

12



An inspection of Fig. 2 tells us that in the end game, at time t=T, the rOver runs

away from the rElay.

I11.2. Special Case — Optimal Control Problem

We are interested in the solution of the zero-sum differential game which, loosely
speaking, is a two-sided optimal control problem. When the rOver is stationary the speed
ratio parameter « =0, and the rElay is faced with a simpler optimal control problem.
Subscribing to Polya’s [4] dictum: “If you cannot solve the problem on hand, there surely
is a simplified version of the problem which you also don’t know how to solve — solve
that problem first”, we consider the case where the rOver is stationary and we first obtain

the closed-form solution of the optimal control problem.

The optimal control problem considered is

min .[OT (r2 =11, cos o)t

s.t.
e =Vecosg, r(0)=rg
O=-"Ysing, H(0)=6,, 0<t<T

e

This is equivalent to setting o=0 in the differential game (3) the parameter.

Without loss of generality we use the characteristic length d =r, that is, using non

dimensional variables, the rOver is stationary at r,=1 and, the optimal control problem is

13



T
m(/!nj'o (r —recoso)dt
st
fe =cosg , g (0)=rg,
O=—1sing , 0(0)=6,, 0<t<T

The state space is the half disc of unit radius centered at (1,0),

{(rE,9)|0§€s%, o<r. 32cos9}

The control 0 < ¢ <7 and the problem parameter is T (T = ‘%T )

111.2.1. Analysis

In the optimal control problem the Hamiltonian
H=r.cos0—rZ +1_Cosp—1,Lsing

Applying the Pontryagin Maximum Principle (PMP) we obtain

r A,
sing’ = ——————
«ME " +4,
. r-A
cosg’ = e

JA T+ A
provided the co-states 4, and 4_ don’t vanish.

The co-states’ differential equations are

A :2rE—cose—/1‘9$—'2n(p , A (T)=0

E

Ay =r8In@ A, (T)=0

14



The TPBVP for the optimal control problem is

. ﬂ'r rE

N=—F— , I.(0) = e
JATE 4 A

. ,19

0= , 9(0) =6,

2.2
A e +4

(4

i

2

. A
A =2r.—cosf+ , A (T)=0

E 2 2 2 2
I 1//LE rr+A

/igersine , 4,(T)=0,0<t<T

Note: if &, =0, the costate 4,(t) <0 VO<t<T;also, /4 _*r.°+4,” #0 VO<t<T.

111.2.2. The End-Game in Optimal Control Problem

(13)

As in the differential game at time t=T where the co-states vanish, and since the

control variable ¢ does not explicitly feature in the cost functional, it is impossible to

calculate the terminal control by applying the PMP and maximizing the Hamiltonian;

obviously, equations (13) don’t apply because qfﬁér;wyf =0. The end game requires

special attention.

Since the end state is free - that’s why the co-states vanish at t=T - the rElay’s

optimal strategy at t=T is myopic. Thus, from first principles it is clear that the rElay

would want the integrand in the cost functional,

L(r.,0) =r." —r_cosd

15



to be minimized. However the control variable ¢ does not feature in L. Hence the rElay

minimizes the temporal derivative of L, evaluated at t=T.

%L = 2. COS ¢ —COS ¢ C0S @ —sin @sin ¢

= (2r, —cos@)cosp—sinsin g
Minimizing in  the derivative of the integrand at time t=T yields

_ Cos & —2rg,

B \/4rET2 +1° —4r_ cos 6,
3 sin 6,

B \/4rET2 +1-4r. cosé, '

cos(¢"(T))

(14)

sin (go* (T ))

Here (rET Mo, ,QT) is the state at time t=T.

Note that as in the differential game, when &, =0, the optimal terminal rElay control is

o (T)= 2 (15)

As in the differential game, an inspection of Fig. 2 and egs. (14) and (15) tell us

: : . . 1
that in the end game, at time t=T, the rElay heads toward the mid-point M:(E ,0).

The analysis yielding the optimal terminal rElay strategy (14) and (15) applies, provided

that the end state (r. ,6;) is not

16



111.2.3. Retrograde Integration: t<T

At time t=T the co-states vanish and we cannot use egs. (13); also,
JA. 1 +2," =0att=T. At the terminal time t = T where, the maximization of JC does

not yield the optimal control according to the PMP, we must use egs. (14) and (15)
derived from first principles. Thus, in the end game at the terminal time t=T, the specified
rElay control in egs. (13), is replaced by the rElay control in the end game, namely, eq.

(14). Thus, at time t=T eqs. (13) are replaced by

. cos &y —2r.
e |T =cos(p (T)) = > e(T) = e,
\/4rET +1-4r. cosé;
. 1 . . 1 sin &,
6| =——sin("(T)) = ————=—=2 0T)=6;
Fe, e, \j4rET +1-4r._cosé, (16)

A _=2r, —cosé, —M:ZQ —cos@ , A_(T)=0

E T r T E

Er

/ig‘T =1 sing, , 2,(T)=0
We can now kick start the backward integration at t = T, from any end state in the
. 1 .
state space, except the special end state r =§, 6, =0, where the terminal control

cannot be calculated. Also recall that the costate 4,(t) <O VO<t<T provided that &

>0. We are particularly interested in the trajectories which, under optimal play, terminate

at the midpoint M of the segment BO where re (T):%, O(T)=0 - referred to as the

17



L 1 .
“sweet spot”. When the end point is the “sweet spot” & =0, I, = > we cannot obtain

the optimal rElay control; the terminal optimal control ¢ (T) cannot be determined from

an examination of the equation

% L = (2r. —cos@)cosp—sindsing

= 0-cosp—0-sing

The same applies when higher derivatives of L are considered. Eq. (14) does not

apply and the retrograde integration of egs. (13) cannot be “started” at the special “sweet
, : 1 :
spot” terminal state Iy = 6, =0 using egs. (16). Yet, as we shall see — see, e.g.,
Figure 4 in the sequel - it turns out that all the optimal trajectories radiate “out” of the
(13 bl 1 HT H
sweet spot” M where I = > & =0 .1n other words, for all initial states (r._, &,) in the

. . . 1
state space there exists a planning horizon T(rz, 6,) s.t. ro(T(re_, 90)):5 and

o(T(r,, 6,))=0.
Furthermore, given the initial state(r. , §,), if the planning horizon

1 .
T>T(r., 6,), the optimal trajectory is s.t. the “sweet spot” I = > 6=0 is reached at

time T(r.,, ), following which, during the time interval T(r. , 6,) <t<T, chattering

control will be applied and the rElay will stay put at the “ sweet spot”. Hence we back off

and instead “start” the retrograde integration from a family of end points located on the

18



circumference of a small semicircle of radius 0<& <1 centered at the “sweet spot”,

namely, the mid-point M :(%,Oj of the segment OB - as shown in Fig. 3.

-~ 40O

&) 2

Figure 3: End Points Manifold
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15 0 05 1 15 2 25

Figure 4: The Optimal Flow Field

The characteristics are integrated in retrograde fashion “starting” out at end-points

E; =(rg 6 ), Where

2
I, :\/gzsin2§+(%+gcos§j :%\/1+4gcos§+4e2 ,

and (17)

gsiné

6, = Atan , 0<é<rx

~ +£c0s
> 4

One proceeds as follows. One “starts out” from a point E; on the terminal semicircular

manifold shown in Fig. 3. Egs. (17) are inserted into the R.H.S. of eqgs. (16) where the

optimal control in the end game is used and equations (16) are then used to step back one

20



time increment to time T-AT . From that point on, having gotten away from the end
i i . 1 .
state, and, in particular, the critical end state I =§, 6. =0, egs. (13) where the optimal

control specified by the PMP is used are integrated in retrograde fashion v T-AT>t>0.

The integration is stopped when the condition r. <2cosé is violated, that is, the

boundary of the state space is reached. The end points manifold is the thick line

semicircle of radius & centered at (% Oj, as shown in Fig. 3. The family of end points

E, is parameterized by the angleé, 0<&<rx.

The rElay’s optimal strategy in the end game is in fact the optimal strategy
throughout, as proven in Section 3.4 in the sequel. Hence the optimal trajectories leading

into the semicircular terminal manifold are straight lines. Also note that if €. =0, that is,
&=0 or &=, the rElay stays on the horizontal line BO — the symmetry axis of the disc
shaped state space — and heads toward the mid-point M of the segment OB.

Consequently, the optimal flow field consists of straight line trajectories which
converge at the “sweet spot” M. This results in the optimal flow field shown in Fig. 4: the
optimal state feedback strategy is

sin@
\/4rE2 +1-4r_coséd

cosf—2r.

2 sin(’(r, 0) =
J4r.2 +1-4r_cos

cos(g' (r, 0)) =

and the ensuing optimal straight line trajectories, all converge to the “sweet spot” M=
1
—, 0].
2

21



111.3.  Analytic Solution of the Optimal Control Problem
In the optimal control problem there are just two state variables, r. and 6. It is

therefore instructive to use Cartesian coordinates (X, y) as shown below.

<e
@)
=

N |+~
N |+~

Figure 5: Trajectory in Cartesian Plane

The dynamics now are

X=sing, x(0) =X,
y=-cosg, y(0)=y,, 0<t<T,

and the cost functional is
y= ZIOT(X2 +y® —x)dt

22



The state space is the set
S ={(x,y)‘x2+y2—2xgo},
namely, a disc of radius 1 centered at (1,0).
The Hamiltonian is
IC=2x—2x* —2y* + A, sinp— A, Cos
The Hamiltonian is maximized on #: which yields the optimal controls

A

y

ﬂ'x o
N AN rw

sing =

Hence, we must solve the TPBVP

X:L, X(0) = x,

2 2
«MX+/Iy
. A,
V=T y(0) =Y,
ﬂ/}tx+/1y

A, =4x-2, 4 (T)=0
A, =4y, 2,(T)=0

111.3.1. The End Game in the Cartesian Plane

(18)

(19)

(20)

(21)

(22)

The controls don’t directly feature in the cost functional. Hence we minimize the

derivative of the integrand in the cost functional:

%(x2 +y° - x) — mJn

2xsingp—2ycosp—sing —min
4

23



[x—ljsin @—YyCoS@— min
2 ¢

1
Z—x

sin(e"(T)) = 2 , cos(¢"(T))= y

23
,/x2+y2—x+1 x2+y2—x+1 23)
4 4

Have obtained the optimal controls in the end game.

e In the end game E heads toward the BO midpoint M.

Proposition A The following holds.

A (1)

2, (t)

=const.=c, 0<t<T. N

Proposition A =

@ (t)=const.,0<t<T

-
X(t) =X, +sing -t
y(t)=y,—cosg -t
-
A =4x,+4sing" t—2
A, =4y, —4cosg’ -t
-

A, (t)=2(2x,—-1)t+2sing -t*-a

X
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A, (t) =4yt —2cosg -t* +b
where a and b are integration constants.

Furthermore, Proposition A =

(2% —1t+sing t*—a
2yt—cosp -t2+b

c VO<t<T

—
(sin(p*+c-cos(p*)t2+(2x0—1—2y0-c)t+a—bc:0 VO<t<T
j—
¢ =-Atanc,
L &
5 %0
2 :tango*,
Yo
h=2
c

We conclude that the rElay heads in a straight line toward the midpoint M.

Finally, given the initial state (x,, Y, ), we calculate

T, = \/x§ +YE =X, o1
4
Note Since 4, (T,.)=0, we calculate the constant
a=(1-2%)) T, —Sing T3,

*

b=(2% —1)T,u C9S¢* +cosg -T2
sing

Now
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max max max

=4T {yo —(%—xojcot(p*}

ly(Tmax):Z[ZyOTmax—c05go*-T2 +(2%, -1)T, Ci;s'—g+c03¢*-T2

But
I X
2 =tang
Yo
-
Ay (Toa ) =0

and the “transversality conditions™ A, (T,,,)=0, 4, (T, )=0 hold.

e The optimal trajectories are straight lines.
111.3.2. Value Function
The optimal trajectories are
X(z)=x+sing -z, x(t)=x
y(r)=y-cosg -7, y(t)=y,t<r<T
and the (constant) optimal controls

1
~—X
2

1
/x2+ X+ =
y 4

y

1
/x2+ ZoX+=
y 4

sing = , COSQ =

Now

X' (7)+y*(r)-x(r)=1" +2|:(X—%jsin(0*—yCOS(p*]T—I-XZ +y?—x

:rz—Z,fszryz—x+%-r+x2+y2—x
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Therefore, the value function is

V(t,x, y;T):ZJ.t{rZ—2,/x2+y2—x+%-r+x2+y2—x}dr
=2 1(T3—'[3’)— x2+y2—x+l-(T2—t2)+(x2+y2—x)(T ~1)
3 \ 4

Hence, have obtained the explicit value function

V(txyT)=2(T —t).{x2+y2—x— /x2+y2—x+%~(T +t)+%(T2+Tt+t2)},

(x,y)eS;, 0<t<T

The domain of definition of the value function V (t, X, y;T) is the set

‘ :{(X’ Y|(x-17 +y? <1 (x—%)zwz sz}_

shown in Fig. 6
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o

Figure 6: The domain of definition of the value function

In particular,

' (XO’yO)EST

N—

V(Xo’yoiT)=2T(X§+y§—Xo—\/XS+y§—xo +%-T +%T2

Note:

1 2 1 1
When T :\/x§+y§—xo+z y(XO,y0)=§(X§+y§—XO—Ej\/xg+y§—xo+z

I11.4. Discussion

This is an interesting optimal control problem: The end state is free and the
control does not explicitly feature in the cost functional, which requires us to consider the
end game. Furthermore, if the planning horizon T is long enough, all the optimal
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. N : . 1
trajectories in the state space will terminate at the “sweet spot” I =§, 6=0. At the

same time, to solve the optimal control problem we employ the method of characteristics
- also referred to as Isaacs method [2], which requires us to integrate the characteristics
equations/state and co-state equations in a retrograde manner, "starting out” from an end
state. But there is only one end state, the critical "sweet spot”. Now, recall that the
optimal control provided by the solution of the end game does not apply at the “sweet
spot” and one is at a loss of how to kickstart the backward integration. This indicates a

strong singularity at this critical end state, the "sweet spot".

Indeed the complete optimal flow field/solution "emanates” from the special
sweet spot, and this has the appearance of a Big Bang type situation. It would appear that
since a family of characteristics, and not just a single characteristic, emanates from the
sweet spot, the solution of the characteristics equation is not unique, and Isaacs method is
not applicable to the solution of the rElay optimal control problem. This difficulty was
overcome by slightly backing off from the sweet spot. The sweet spot was replaced by
the family of terminal states shown in Fig. 3, namely the small semicircle centered at the

sweet spot and indicated by the thick line; the radius of the semicircle is & <1.
When “starting” the integration from, say, point E; on the circumference of the

semicircle, the first step in the retrograde integration entails the use of the optimal

strategy (14) for the end game; the end states E. on the circumference of the small semi-

circle are parameterized by the angle &, 0< & <x. This kicks off the integration, and

from this point on, one uses the characteristics’ egs. (13). The integration is stopped when
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the boundary of the state space is approached, where the condition r. <2r,cosé is

violated.

I11.5. Differential Game
To solve the differential game we employ the method of characteristics, a.k.a., the

method of Isaacs. The partial derivatives of the value function are related to the costates

according to
VrE E—AFE, Vro E—lo, V,=-4,

I

Hence, in view of egs. (3), (5), (7) and (8), the equations of the characteristics are

d V,?
—V, =2r,c0s0—4r. — , V. (T)=0
dt rEz\/VrEZrE +V,2

2
4 L =2r.c050-2r,+a Vo .V, (T)=0
dt o Vi olo +V,?

%Ve =-2r.1,sin6, V,(T) =0

d e, T >0

— =, I (T)=r, 1. 2

dt E m E Er ' 'E

d r‘O o _

aro_oc o 2,ro(l')_roT,roT>0
b 'O 0

do v, B

V9 -1 1 r-E
—=q , 0(T)=6,,0<6, <cos (=—), 0<t<T
d \/\/rozro +V,2 1 \/VrEZrE +V,? 21,

30



According to Isaac’s method [2], the characteristic equations are integrated in

retrograde fashion “starting” out at r. ,

I, 6.Tothisendset 72T —t. Thus

d A ©)

— e =————— 1, (0) =T,

dr © N I +V

d rOVr

— Iy =—a——=—, I,(0) =r

dr © r02r02+ ) © o

deo 1

a9 _ _ V,, 6(0)=6.
dr rE\,A/rEerZ +V,? r \i\/ ’ '
d
EVrE=4rE—2rocose+r \ﬁ/ e , V. (0)=0

d
—V_ =2r,-2r.cosf—-a V. _(0)=0
dr ® o E r, \/V ro( )
divg = 2r.r,sind, V,(0)=0, 0<7<T

.

(24)

Now, the first step in the retrograde integration of the equations of the

characteristics requires us to use the controls from the end game. Thus, the first

integration step is

2r_ —r, cosé,

L (AT)=r, +AT- SE bt
\/4rET2 +1,, * —4r. T, C0s6;

r. cosé. —r,

L(AT) =1, +aAT- B T O

2 2
\/rET +1p " —2r T, COS6;

;
O(AT) =6 +AT sing | - ——xe
e, \/4rET +1, —4r 1, cosf T

V, (AT)=2AT(2r,,
V, (AT) =2AT(r, —r. cosé;)
V, (AT) =2ATr. 1, siné;

— I, COS6;)

31
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siné,

2 2
\/ o +h —2rET I, COS o,

(25)



Equations (25) are obtained from egs. (24) by using therein the terminal optimal controls
derived in Section 2.1.

Since V, (0)=0, V,_(0)=0 and V,(0)=0, the first step (25) is required and the
integration of the equations of the characteristics (24) starts at time t=AT with the
“initial” condition (1. (AT), 1o (AT), 0(AT), V,_(AT),V, (AT), V, (AT)).

The following holds.

PROPOSITION When the speed ratio 0<a <2, the rElay can always reach the

midpoint M, provided that the game horizon

Tt \/4rE2 +1,2 —4r_r, cos @

(2-a)

Proof
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Figure 7: Pursuit - Evasion

From Fig. 7, the instantaneous distance EM is

d= %\/4&2 +1,° —4rr, cosé
and

1 a . a . 1.
d:% 2r, COS(p+EI’OCOSl//—rOCOSHCOS(p—aI‘E cos@cosy +r.1,sin@| —siny ——sing
IFO r.E

L
2d

(04 . . . .
2r, c05¢+5ro COSy —TI, COS 6 COS @ — al. COSOCOSy +ar Sin@siny —r, singsin ¢

= %{(ZrE — 1, C0S0)COS P —T, Sin esin¢+%[(ro —2r, cos@)cosy + 2r sinFsin y/]}
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Now minmaxd vyields the rElay pursuit strategy
"

I, Cos@—2r
\/4rE2 +1,2 —4r.r, cos &

r,sing
\/4rE2 +1,2 —4r.r, cosé

CoS @ = ) sin(p:

The rElay heads toward the midpoint M of the segment BO.
The motion of the midpoint M is exclusively controlled by the rOver and the rOver’s
evasion strategy is

Iy —2r; cos@
\/4rE2 +1.2 —4r_r, cosd

2r.sin@

cosy =
\/4rE2 +1,2 —4r_r, cosd

, Siny =

Hence, we calculate

.1 1
d =E(—\/4r52+roz‘4rEr0 COS@+§06\/4rE2+rOZ—4FEro cose)
:%(a_z)\/4rE2+r02—4rEro cos@
2

and therefore the time-to-go

1
= 4r.% + 1,2 —4r.r, cos 0 0
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In general, optimal trajectories do not terminate s.t. a configuration where B, E

and O in Fig. 2 are collinear is achieved. If however the game horizon T is sufficiently
. o 1

long and the speed ratio parameters 0 <« < 2, at some point in time a state s.t. ;. = > Iy

and @ =0will be reached under optimal control, after which the game is rectilinear and

the trajectory arc is singular. — strictly speaking the rElay will reduce its speed to Ea and

follow the rOver s.t. 1. (t)=

N

I, (t). Hence we are interested in the trajectories which
13 99 2 M [13 29 1
emanate” in retrograde fashion from “sweet spots” (I = 2 Iy, 6=0).

It is however impossible to kick start the retrograde integration of the equation of
the characteristics using egs. (25) when starting out from a “sweet spot”. Therefore,
similar to the optimal control problem, we "start out" from the family of "initial states"

parameterized by &, as shown in Fig. 3. Thus, in egs. (25)

Ie, _\/(Eror +£C€088) +e%sin" S, r, =1, , 6, =Atan

5T, +£COSE

where 0< & < 1. In other words, in egs. (25)

1
. (é;rq):\/qu%rrqgcos@ne2 Mo =T,

esiné

GT(f;rOT):Atan ,0<&E<r

5o, +£COSE
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111.6. Optimal Play

In Fig. 8 optimal trajectories in the state space are shown.

BT 5)
rO
y
.‘..- ..‘,-‘, - P ”(7,“3,(1@2)
4
Bt 1) To, = - — .. o
............... S CETE RLL ek ; E(r ) )
o=
(T 161)
e (T, 162) J—
R I W R
To (7o, 52) Lieey \ T 200 (P, 2)
R N (e
To (a1 &1) %ro(rm‘;;) _____________ 2—";(TW1§§1)
B
X

Figure 8: Optimal Relay Trajectories in the State Space

The broken lines are rElay trajectories in the state space which terminate at

I, =1 and the full lines are their projection onto the half disc at r, =1.Optimal

trajectories which terminate at r, =1 are constructed. The retrograde integration of the
equations of the characteristics yields I (7;&), 1, (7;&) and 0(7;&). 7, is determined

by the condition I (7, &) =20 (T £)-€0S(6(Te: £)), that is, the boundary of the
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state space is reached, or, Q(Tmax ; 5) =0, that is, the plane of symmetry of the state space

is reached. To plot the trajectory in the state space, are calculated

111.6.1. The Optimal Trajectories in the Realistic Space

ry (z'), 9(2’), 0<r=<7,.

The retrograde integration of the equations of the characteristics yields the
optimal trajectories r. (),
We have used a reduced state space (

e, 1o,

@ )and have obtained the trajectory and

optimal controls’ time histories in a rotating frame of reference. Specifically, the

N =2

max_ -«

sequences I, 21 (KAT), I, 21, (KAT), 6, £ 0(KAT), k=1,..,N are calculated, where

A e _1\/1+4gcos§+452, o, =T, =1 6, = Atan £sine
2 E+gcos§

In addition, the optimal control sequences ¢, = ¢ (KAT), v, =y (KAT),

k=0,...,N-1 are also calculated. To better visualize the optimal trajectories, they are
plotted in the realistic plane. We proceed as follows.
Set

E(KAT)=E((N —k)AT), O(KAT):=O((N —k)AT), k=0,...,N-1
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and

9 (KAT)=¢ (N -1-Kk)AT), y (KAT) =y ((N-1-k)AT), k=0,...,N-1.

Figure 9: The Construction of Optimal Trajectories in The Realistic Space

The origin of the realistic plane is at B and the x-axis of the realistic plane is aligned with

the segment BO(0). Thus, the coordinates of the rOver and rElay at time t=0 are
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CAt time t=0, the rElay and rOver start out from
0, £0(0)=(r(0), 0) and E, = E(0)=(r.(0)cos(6(0)), r. (0)sin(6(0))).

Using the position of E at t=0, E, £ E(O), and the optimal control of E at time t=0,
@ (0), we obtain E, = E(AT) as shown in Fig. 9. Likewise, using the position of O at
t=0, O, =£0(0), and the optimal control of O at time t=0, y"(0), we obtain
O, 2 O(AT), as shown in Fig. 9. Having obtained E, = E(AT), construct the line BE,
and use the rElay's optimal control ¢ (AT) to obtain E, = E(2AT). Similarly, having
obtained O, ZO(AT), construct the line BO, and use the rOver's optimal control

v (AT) to obtain O, = O(2AT).
This process terminates at time N, where N = TAm—_arX One thus obtains the trajectories

E, £ (% (KAT), ye (KAT) ), and O, £(%, (KAT), yo (KAT) ), k=0, N.

We want these trajectories to be presented in an (X, y) frame where the x-axis is aligned

with the segment BO,,.

N

Having obtained O, namely, (XoN, Yo, ) calculate the angle 7 = Ata”(yON J

Note : /X, *+Yo,” =T (N)=1

To get the rElay and rOver's trajectories in the new (x, y) frame, rotate the rElay and
rOver trajectories 7 degrees, namely
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Xg ‘= Xg COS7+ Y Sinny
Y =—XgSinn+ Yy cosy

and

Xo = X5 COST + Y, SiN7
Yo =X, SIN7+ Y, COS7
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IVV. Analysis and Results

IV.1. Optimal Trajectories of Rover and Relay for different speed ratios «, and
angle of approach of “sweet spot” &.
The cases of a speed ratio & =0.5 and angle of approach & is illustrated in Fig.

10, for different terminal rOver distances from the base.
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,\\II / g
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Figure 10: Optimal trajectories of Rover and Relay for £=10°, «=0.5,1, =1, 2,3
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Figs. 10 and 11 show that the trajectories don’t scale linearly as r, and « vary.
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Figure 11: Optimal trajectories of Rover and Relay for

§=10°, =05,1,15,r, =1
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Figure 12: Optimal trajectories of Rover and Relay as & changes
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Figure 13: Optimal trajectories of Rover and Relay for ¢ =0.5, £=0°
When & =0°, the rElay approaches the “sweet spot” at an angle 6 =0° during the

) 1
game. The rElay’s displacement is twice of the rOver’s because of the speed ratio o = >
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Figure 14: Time history of the States, Costates and Controls. « =0.5, £=0°
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Figure 15: Optimal trajectories of Rover and Relay. « =0.5, £=30°, 1, =1

Unlike the case £=0°, when &=30° the rOver and rElay don’t move along a
straight line. However, even though they didn’t stay on the =0 line, eventually they

end up s.t. &=0. The broken line shows the end position at

max !

where the three points

B, E, O are collinear.
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Figure 16: Time history of the States, Costates and Controls. « =0.5, £=30°, r, =1

At the end point the rElay’s control is ¢ (0) =180° —30° =150°

47



0.2

0.2

0.4

0.6

0.8

Figure 17: Optimal trajectories of Rover and Relay. a =0.5, £=120°, r, =1

When £ =120° the rOver and rElay start the game at a non zero # angle. In other
words, initially the base, rOver and rElay are not colinear. The optimal trajectory

“terminates” on the boundary of the state space s.t. I (Tmax ) =21, (rmax ) . COS(@(TmaX ))
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Figure 18: Time history of the States, Costates and Controls.

a=05, £=120°, 1, =1

At the end point the rElay’s control is ¢ (0) =180° —120° = 60°
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Figure 19: Optimal trajectories of Rover and Relay =1, £=0°, 1, =1

Unlike in the previous cases, when 1<« <2, the rElay and rOver start and end

the game at 8 =0, irrespective of &.
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Figure 21: Optimal trajectories of Rover and Relay. a =2, £=180°, r, =1

The rElay and rOver should start and end on a line since &=180°". In other words,

they maintain 8=0. However, as seen in Fig. 21, the simulation didn’t show the result
we expected. This is because of a small numerical error. Without the error, the rOver and

rElay each will start the game at 0.5 and 0.75.
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Figure 18: Time history of the States, Costates and Controls. « =2, £=180°, r, =1
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IV.2. Optimal Trajectories of Rover and Relay for different r. , r, , &
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Figure 19: Optimal Trajectory of Relay When r; = 7 o,
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Fig. 19 shows the case when the rElay doesn’t have enough time to reach to the
mid- point. This is the optimal control case when the rOver is stationary. Therefore the

rElay moves straight toward the mid-point, however unlike in our previous result, it stops
moving at r. :Z. Whereas, the rOver is moving and the rElay is tracking its optimal
position continuously in fig. 22. In both cases the rElay was not able to reach its optimal

position but it’s following the guidance of the optimal control law.
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From these results now we know we can check if the rElay is optimally
positioned. And if it is, even the rElay didn’t arrive its optimal point we are able to
calculate the estimated location or time it takes until the rElay will reach this position.
Moreover, if we know the final position of the rOver and the time we are given, even if
the rElay was following the optimal course, we can find the final optimal point of the

rElay. Therefore we can control the rElay directly to the intended location.

IV.3. Comparison of the End Game Control Law and Optimal Control Law

180

160

140

120

100

Deg

40

Figure 23: Comparison of the End Game Control Law and Optimal Control Law

=051 =1a=1 £=0°
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Figure 24: Comparison of the End Game Control Law and Optimal Control Law
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Figure 25: Comparison of the End Game Control Law and Optimal Control Law

e =051, =1L a=1 £=60°
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Figure 26: Comparison of the End Game Control Law and Optimal Control Law

r. =051, =L a=1 &=90°

Figure 27: Comparison of the End Game Control Law and Optimal Control Law
e, =051, =1 a=1 £=120°
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Figure 28: Comparison of the End Game Control Law and Optimal Control Law
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Figure 29: Comparison of the End Game Control Law and Optimal Control Law

e, =051, =1 a=1 £=180°
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Figure 30: Comparison of the End Game Control Law and Optimal Relay Control

Law r; =05, 1, =1, =0, £§=90°

As we see from Figs. 23-30, the control of the rElay using the optimal control law
and the end game control law look very similar. However, the rOver’s control using the

end game control law is quite different from the optimal control law.

We are mostly concerned with the control of the rElay. Therefore we can conclude that

the end game rElay control law is a good sub-optimal control law.
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V. Conclusions and Recommendations

V.1. Conclusions

This thesis develops optimal guidance laws for a rElay MAV in support of
extended range ISR operations. The algorithm is based upon the solution of a min-max
optimization problem, namely, the solution of the differential game, which represents a
worst case scenario. Heuristic rElay guidance strategies are also provided. These are
derived using a geometry based (sub) optimality principle, and also the solution of the
one-sided rElay optimal control problem, where the rOver is considered stationary. Both
methods provided corroborating results which were then employed to gain insight into
the solution of the differential game. The optimal control and differential game’s solution

exhibits interesting behavior: the optimal flow field namely the optimal trajectories will

. 1 . . .
converge to the family of end statesr. =§ro, where from the optimal trajectory is a

singular optimal trajectory and r: (t)zarO (t) Yt. A parametric investigation was

conducted and optimal trajectories where generated for speed ratio parameters 0 <a < 2.

When the speed ratio a>2, a “sweet spot” won’t be reached. Obviously, the most

interesting case is a =1.

V.2. Recommendations for Future Research
The interesting cases of
1. Higher-order-dynamics of the rElay MAV must be modeled, including a time

delay in the control loop.
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Multi player scenarios must be addressed: One rElay MAV, multiple rOver
MAVSs needs to be considered.
Multiple relay MAVs and multiple rOver MAV scenarios must be considered.

Investigate different RF power requirements for Rover and Relay
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Appendix A — Additional Scenarios

Figure A. 1: Optimal trajectories of Rover and Relay. « =0.5, £=60°, r, =1
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Figure A. 2: Time history of the States, Costates and Controls.

=05 £=60°, 1, =1

At the end point the rElay’s control is ¢ (0) =180° —60° =120°
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Figure A. 3: Optimal trajectories of Rover and Relay. « =0.5, £=90°, r, =1
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Figure A. 5: Optimal trajectories of Rover and Relay. a =0.5, £=150°, r, =1
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Figure A. 6: Time history of the States, Costates and Controls
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Figure A. 7: Optimal trajectories of Rover and Relay. a =0.5, £=180°, 1, =1
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Figure A. 8: Time history of the States, Costates and Controls
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Figure A. 9: Optimal trajectories of Rover and Relay. a =1, £=30%, 1, =1
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Figure A. 10: Time history of the States, Costates and Controls.
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At the end point the rElay’s control is ¢ (0) =180° —30° =150°
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Figure A. 11: Optimal trajectories of Rover and Relay. a =1, £=60°, r, =1
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Figure A. 12: Time history of the States, Costates and Controls.
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At the end point the rElay’s control is ¢ (0) =180° —60° =120°
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Figure A. 13: Optimal trajectories of Rover and Relay. o =1, £=90°, r, =1
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Figure A. 14: Time history of the States, Costates and Controls.

a=1 £=90° 1, =1
At the end point the rElay’s control is ¢ (0) =180° —90° =90°
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Figure A. 15: Optimal trajectories of Rover and Relay. a =1, £=120°, r, =1
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Figure A. 16: Time history of the States, Costates and Controls.
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At the end point the rElay’s control is ¢ (0) =180° —120° = 60°
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Figure A. 17: Optimal trajectories of Rover and Relay. a =1, £=150°, r, =1
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Figure A. 18: Time history of the States, Costates and Controls.

a=1 £=150°, 1, =1

At the end point the rElay’s control is ¢ (0) =180° —150° = 30°
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Figure A. 19: Optimal trajectories of Rover and Relay. a =1, £=180°, r, =1
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Figure A. 20: Time history of the States, Costates and Controls.

a=1 £=180" 1, =1

At the end point the rElay’s control is ¢ (0) =180° —180° =0°
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Figure A. 21: Optimal trajectories of Rover and Relay. a =15, £=0°, , =1
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Figure A. 22: Time history of the States, Costates and Controls.

a=15 =01, =1
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Figure A. 23: Optimal trajectories of Rover and Relay. a =1.5, £=30°, r, =1
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Figure A. 24: Time history of the States, Costates and Controls.

a=15 £=30° 1, =1
At the end point the rElay’s control is ¢ (0) =180° —30° =150°
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Figure A. 25: Optimal trajectories of Rover and Relay. a =1.5, £=60°, r, =1
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Figure A. 26: Time history of the States, Costates and Controls.

a=15 £=60°, 1, =1
At the end point the rElay’s control is ¢ (0) =120°
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Figure A. 27: Optimal trajectories of Rover and Relay. a =1.5, £=90°, r, =1
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Figure A. 28: Time history of the States, Costates and Controls.

a=15 £=90°, 1, =1

At the end point the rElay’s control is ¢ (0) = 90°
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Figure A. 29: Optimal trajectories of Rover and Relay. o =1.5, £ =120°, r, =1
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Figure A. 30: Time history of the States, Costates and Controls

a=15 £=120°, 1, =1

At the end point the rElay’s control is ¢ (0) =60°
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Figure A. 31: Optimal trajectories of Rover and Relay. o =1.5, £ =150°, 1, =1
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Figure A. 32: Time history of the States, Costates and Controls

a =15 £=150°, 1, =1
At the end point the rElay’s control is ¢ (0) = 30°
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Figure A. 33: Optimal trajectories of Rover and Relay. « =1.5, £=180°, r, =1
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Figure A. 34: Time history of the States, Costates and Controls
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Figure A. 35: Optimal trajectories of Rover and Relay. « =19, £=0°, r, =1
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Figure A. 36: Time history of the States, Costates and Controls.

a=19, £=0°, 1, =1
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Figure A. 37: Optimal trajectories of Rover and Relay. o =1.9, £=30°, r, =1
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Figure A. 38: Time history of the States, Costates and Controls

a=19, £=30°, 1, =1

At the end point the rElay’s control is ¢ (0) =150°
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Figure A. 39: Optimal trajectories of Rover and Relay. «=1.9, £=60°, 1, =1
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Figure A. 40: Time history of States, Costates and Controls. o =1.9, £=60°, r, =1

At the end point the rElay’s control is ¢ (0) =120°
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Figure A. 41: Optimal trajectories of Rover and Relay. o =1.9, £=90°, r, =1
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Figure A. 42: Time history of the States, Costates and Controls

a=19, £=90°, , =1
At the end point the rElay’s control is ¢ (0) =90°

106



0.1

0.1

0.2

0.3

0.4

05

Figure A. 43: Optimal trajectories of Rover and Relay. ¢ =1.9, £=120°, r, =1
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Figure A. 44: Time history of the States, Costates and Controls

a=19, £=120°, 1, =1
At the end point the rElay’s control is ¢ (0) =60°
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Figure A. 45: Optimal trajectories of Rover and Relay. « =1.9, £=150°, r, =1
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Figure A. 46: Time history of the States, Costates and Controls

a=19, £=150°, r, =1

At the end point the rElay’s control is ¢ (0) = 30°
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Figure A. 47: Optimal trajectories of Rover and Relay. « =1.9, £=180°, r, =1
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112

0.1 o -300
0 0.2 0.4 0.6 0.8 o 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
tau tau tau
8
x 10
o 0.35 14
\ 0.3 12 /'
-0.005
\ 0.25 / ~ 1 /
0.0 0.2 / 08
e e s
> > o / > 06 /
-0.015 13 / ) /
\ 0.1 0.4
-0.02 / /
\ 0.05 0.2
0.025 0 [
0.2 0.4 0.6 08 o 0.2 0.4 0.6 0.8 o 0.2 0.4 0.6 0.8
tau tau tau
3
25
2
o
j9
8 15
1
05
0 2
0 01 02 03 04 05 0.6 0.7
tau



0.1

0.1

0.2

0.3

0.4

0.5

Figure A. 49: Optimal trajectories of Rover and Relay. =2, £=0° 1, =1
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Figure A. 50: Time history of the States, Costates and Controls.
a=2,£=0%r1 =1
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Figure A. 51: Optimal trajectories of Rover and Relay. a =2, £=30°, 1, =1
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Figure A. 52: Time history of the States, Costates and Controls.

a=2£=30°1, =1
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At the end point the rElay’s control is ¢ (0) =150°

Figure A. 53: Optimal trajectories of Rover and Relay. a =2, £=60°, r, =1
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Figure A. 54: Time history of the States, Costates and Controls.

a=2, E=60° 1, =1

At the end point the rElay’s control is ¢ (0) =120°
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Figure A. 55: Optimal trajectories of Rover and Relay. o =2, £=90°, r, =1
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Figure A. 56: Time history of the States, Costates and Controls.

a=2,E=90°, 1, =1

At the end point the rElay’s control is ¢ (0) = 90°
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Figure A. 57: Optimal trajectories of Rover and Relay. =2, £=120°, r, =1

121

1.2



AN
.____\: <
N
/|

>

w 06 L 07 8
f -
g1
0.55 06 \
o
05 05 N
0.45 0.4 1
o 01 02 03 0.4 o 01 02 03 04 o 01 02 03 0.
t tau tau

04

120 /

Deg

40

20

0 0.05 01 0.15 0.2 0.25 03
tau

Figure A. 58: Time history of the States, Costates and Controls.

a=2,&£=120° 1, =1

At the end point the rElay’s control is ¢ (0) = 60°
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Figure A. 59: Optimal trajectories of Rover and Relay. o =2, £=150°, r, =1
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Figure A. 60: Time history of the States, Costates and Controls.

a=2,£=150°, 1, =1

At the end point the rElay’s control is ¢ (0) = 30°
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Appendix B — Geometry

An Elementary Euclidean Geometry Result:

It is well known that the locus of all points such that the sum of the distances from

two fixed points is constant, is an ellipse. Thus, the following is of some interest.

Theorem 1 The Locus of all points such that the sum of the squares of the
distances from two fixed points is constant, is a circle centered at the midpoint of the

segment formed by the two fixed points. The radius of this circle is

R=,d*-f?

where the sum of the squares of the distances is 2d” and the distance between the fixed

points is 2f ; obviously, d > f .
Proof:

Let the fixed points F; and F, be on the x-axis (F; = (f, 0), F, = (-f, 0)) as shown

in the figure below.
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»
»

Figure B. 1: Schematic of Fixed Points Showing Isocost Circle
The sum of the squares of the distances is calculated as

2d% = (f +x)* +y* +(f =x)* +y?
=212 4+2x% +2y?

= X +y?*=d*-f?

This is the equation of a circle centered at the origin, whose radius is

R=,d*-f?

This result appeared in [5].

Remark: The loci of constant costs, 2d?, are concentric circles where the minimum cost

is found at the midpoint of the line formed by F; and F,, where d = f.

Extension: The Locus of all points such that the weighted sum of the squares of the

distances from two fixed points is constant, is a circle centered on the segment formed by
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the two fixed points and is at a distance of (1 — 2)f from this segment’s midpoint. The

radius of this circle is

R=1/d?-4a(l-a)f?

where d’ is the specified weighted sum of the squares of the distances, the distance

between the fixed points is 2f; and the weight is «; if « <0 or « > 1 this is true vd >0,

and if 0<a <1, d >2f,/a(l-a) . Note: When the weight o =%, need d > f .

Proof: The weighted sum of the squares of the distances is calculated as

d? :a[(f +x)2+y2]+(l—a)[(f —X)* + y2]
=af’+ax’ +2afx+ay’ +(1-a)f?+(1-a)x* -2(1-a) ix+ (1-a)y?
=24 x*+y?-2fx(1-2a)
=[x=(@-2a) f] + f2+y* —(1-2a)* f*

= [x-1-2a)f] +y*=d’ —da(l-a)f?

127



Appendix C — New Parameterization of Family of “Endpoints”

. 1 , : .
Each “sweet spot” on the line Iz = Ero is encapsulated in a small hemispherical

terminal manifold, as shown in Fig.C.1

1 L} "
E = Ern ("sweet spot” locus)
Yo
1 8, = ¢ siné
Erq_ T
o, I, =1, —& cos&cosy
r = Er"" — & cosé&sing

3 0<n<2x
o 0 0<&< g

Figure C. 1: End States’ Manifold
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Figure C. 2: State Space

Consider the family of “sweet spots” (% roT,roT,Oj which is parameterized by

oo T >0.

As in the optimal control case, we back off from “sweet spots” and the retrograde

integration of the characteristics equations is initiated from end states(rET,roT ,QT) on a

hemispherical manifold, as shown in Fig.C.1, where
6. =¢&sing
r

o, =T, —& Cosg cosn

129



1 :
re :=§rOT —& 0S¢ sinn

T

0<n<2rx

T
0<é<—
d 2

. . 1 . . .
The end states associated with the “sweet spot” (E AP A Oj reside on a hemispherical

terminal manifold, as shown in Fig.C.2, where the state space of the differential game is

illustrated.

Without loss of generality we confine our attention to r, =1. The family of optimal

trajectories is thus parameterized by 0<¢ s% and 0<n<2z. The retrograde
integration stops when r. = 2r,cosé.

The optimal control of the rElay at t=T is given by the solution of the end game

where the end state is .

E,OT,¢§v.|tis

I, Cosé, —2r,
cos i Er

\/4r +1o —4r o, cos &,

ino, (26)
. . r, sin
sm((p (T)): OT

\/4r +Io 4r o, cos &,

. . 1
provided that the end state is not Iy = Eror , 6. =0.
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Similarly, the optimal control of the rOver at t=T given by the solution of the end

game is

I
* T — OT i)
cos(y"(T)) \/rETerroTz_erT Iy, COS6;

— I COS6;

27
e, Sing; @0

sin(v"(T)) =

2 2 '
\/ fe, " +1 " —2rg I, COSG;

provided that the end state is not r, =r, , & =0; when this is the case, from first

principles we conclude that the rOver’s control ™ (T ) =0.

Similar to the solution of the optimal control problem, the ‘“sweet spot” is

1

e =—=r,, 6 =0. This however is problematic, because the respective rElay and rOver
T2

terminal controls given by egs. (26) and (27) cannot be computed. Therefore, similar to

the optimal control problem, one backs off and one considers the terminal states on the

hemisphere shown in Fig.C.1.

The end states on the small hemisphere around the “sweet spot” are parameterized

as follows.
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6, =¢gsiné

o, =1, —&COS& COSn

Or
1 .
e, =T, —£C0S& siny
2 (28)
0<n<2rx
T
0<é<—
g 2
0<e&=1, fixed

The optimal controls at t=T for end states on the hemispherical terminal manifold are

obtained by inserting egs. (28) into the terminal control egs. (26) and (27).

We calculate

4re * 41, " —4r. 1, COSO; ~ 4(%rof +&” cos” & sin*y—er, cOs& sinn)
+1, 2 +£°C0s* £ €OS® 7 —2¢r, COSE COSTy
_a[ Ly _zcosesin (r —£C0SE COS )1—l Zsin?
ol ¢ g sinn |(r, —&cos& cosn > ¢ g
= gz[rmzsinz E+3c0s’ £ sinn +cos® £ —2c0s” & sinzn]

o, SiNG; ~ el siné

r

o, €086, —2r. ~&Ccos&(2siny —cosn)

Inserting these expressions into the rElay’s terminal control egs. (26) yields

cos & (2sinn —cosy)

cos(o (T))=
e (r) \/rorzsin25+3coszfSin277+0052§—2005255in2’7

o, Sing

- \/rof sin® £+3c0s” & sin’n +cos® £ —2¢0s” £ sin2p

sin(¢"(T))

Next,

132



1 . i
I f 0o, "~ 20 T, 0080 ~ 7, * 4" 008 & siny e, CoS¢ sing 41, * +57 c0s™ & cos”yy

— 28T, COS& COS7y

-2 1r —£COSE sin (r —£C0OSE COS 1—1 2sin?
ST, —ecosg siny |(r, —zcosg cosp)| 1-—&"sin’ ¢

_1 2 -

=7 el cos&(sinng —cosn)

+&? (%rwzsinzgmoszg—moszf siny cosnj

o, —Te, COS6; =%rOT +gcos§(sin77—cosn)+%gzrOT sin® & z%roT
ing. — 1 . 1 :
re, sinér =¢ Eror —&cCosé siny [siné NE”OT siné
—cos(y"(T)) =1L sin(y"(T))=0
Inserting these expressions into the rOver’s terminal control egs. (27) yields

Using these controls at time t=T, we obtain

cos & (2sinn —cosn)
\/rwzsin2§+3coszf sin%; +cos? & —2¢0s? & sin2n

e = h=«

5 casin&(r, -2 cos&sing )

2
o,

Iy, SiNS

@rOT —gcosfsinnj\/rofsin2 E+3c0s” £ sin’n +cos’ £ —2c0s” & sin2p
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r
We note thatr, T ifO<n <7z and r. Lif 7<n<2z,thatis,r. T if rE<% and r_ 4 if

r. . _
r. > %, 0 <0. Hence, the trajectory heads toward the locus of “sweet spots”

st.r, T.

The above differential equations allow us to propagate the state to time T —AT :

(T —AT):%rOT —£C0SE siny

B cos¢ (2siny —cosz ) AT

\[r(hz sin” £ +3¢0s° £ sin’y +c0s” & —2¢0s° & sin2n

I (T—AT)=r, —&cos& cosn—a-AT

r, sin
o Sin¢ AT

O(T-AT)=gsiné+
[Zr‘* —£C0S¢ sinnj\/r%zsin2 £+3008° & sin’n +cos® £ —2c0s’ £ sin2n

earsin£(r, —2£c0s¢ sinn) u

2
fo.

To propagate the characteristics/co-states to timeT —AT (z = AT ), we proceed as

follows.

Recall
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2
inE =4r. —2r,c0s 0+ Vo

V. (0)=0
i vy

V 2
iVro =21, —-2r.cosf -« -

, V., (0
dr roz,/rozvro2 +V,.° ©)

ivg =2r.rysin6, V,(0)=0, 0<z<T
T

I
o

Now, on the one hand,

Vo

and on the other hand, we have calculated the terminal rElay’s control

sing” =

o, SINE

sin(go*T(eT, o, e )):\/

2 ain?2 2 H) 2 2 H
I, ~sin®&+3cos” & sin“py +cos” & —2cos” & sin2p

Similarly, on the one hand

V

(4

and on the other hand, we have calculated the rOver’s terminal control

siny” =

sin (://*T (6 160 1, )) ~0
Thus, the limits

lim Yo i Vo

—0 lim ———
Vg, Ve >0 2 2 Vg,V >0 2 2
0 Veg JrEerE +V, 0 Veg Jroz\/ro +V,

exist.
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V, 0
V4V
Vv, _0
LV, 2 +V,’ .
=at =0
d
d_rer =2(2r. -1, c0s6), V,_(0)=0
divro =2(2r, -1 c0s8), V, (0)=0
T
=V, (AT)

:z{roT —2£C0S & sinn—(r% —%rngzsinzf—gco%8 cosn+%53 cosé& sin® & cosnﬂ

=26AT (%r%gsinzf—mosé sinn +cos & cosn—%gzcosg sin®¢& cosnj

Vv, (AT)
=2|r. —£cos& cosn— 1r —1r 2sin% £ —gcosé sin +1 3cosé& sin? & sin
- o &g 5 77 EOT ZOTE 5 & 5 77 Eg 5 5 77

1 . . - -
=AT[roT —2£C0S& cosn+5r%523|n2§+2«9c03§ sinn+&°cos¢ sin®¢& 5"”7)

V, (AT)

=2¢&sin EAT (%rof —%gr% COS& €osyp—T, £C0S& siny +&°cosé siny cosy J

From this point on, the retrograde integration of the characteristics’ eqs.(10) is

undertaken.
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We show the family of optimal trajectories in an (X,y) plane where

X(t) = re(t) cos(A(t)),  y(O=rc(t)sin(4(1))
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Appendix D — Suboptimal Solution

Suboptimal solutions are useful in their own right and provide insight into the

optimal control problem and differential game

Geometric Approach

Using a geometric approach provides a suboptimal but easily implementable
solution of the differential game. This approach is suboptimal because the rElay and the
rOver each momentarily assume that the other player is stationary when determining their

optimal control.

& v
\? M A Vo

v
=

Figure D. 1: Schematic of Relay System Showing the Midpoint

The geometry of the engagement forms a triangle with vertices E, B and O
representing the respective locations of the rElay, Base and rOver (see Figure D.1). Let M

be the midpoint between the rOver and the Base. Simply rotating the schematic in Figure
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D.1 provides an equivalent schematic (see Figure D.2) which is similar to the one

analyzed in Appendix A.

Isocost Circle y
Figure D. 2: Schematic of Relay System Showing Isocost Circle

If the rOver were stationary, the loci of constant instantaneous costs

y=EO +BE

for the rElay are concentric circles centered at the midpoint and the midpoint is the rElay

location which minimizes the cost.[2] The rElay is on the circumference of said circles,
and the instantaneous cost v is determined by the position of the rElay. This means that

the gradient vector for minimizing cost is in the radial direction. Therefore, the optimal

strategy of the rElay is to head toward the midpoint M.

The optimal control of the rElay is determined using the triangle ABEM. The
distance between E and M is determined using the law of cosines (just as in determining
the distance between E and O before). The control angle ¢ is then found indirectly by

finding its supplementary angle using the law of sines. However, due to an inherent
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ambiguity in the law of sines, the control law is specified for three cases: (1) ¢ is acute,

(2) @is 90° and (3) ¢ is obtuse.

sin! r,sin@ forr. < fo cosé
E
J4r2 +1& —4r.r, cosd 2
I, COS
Q* = % forr, =2 0 (29)
—sin I,siné@ forr. > fo cos 6
E
J4r2 +1& —4r.r, cosd 2

This ambiguity can be bypassed by using an inverse cosine function in place of the

inverse sine, i.e.

o+ = cos™ I, cos @ —2r, (30)
J4rZ +12 —4r.r, cosd

Note that these rElay strategies are independent of the planning horizon T.

Once E, B and O are collinear, reducing the rElay velocity eliminates the need for
excessive control use. However, the rElay might never actually arrive at the midpoint due
to a short planning horizon T, or the maximizing efforts of a fast rOver. If the rOver used
a suboptimal control strategy (which would usually be the case in practice), the rElay
may be able to always arrive at the midpoint and consistently match the motion of the

midpoint; this is a singular trajectory.
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An additional one-sided optimization problem is obtained when the rOver’s point
of view is taken, namely, the rElay is stationary and the rOver works to maximize the

cost functional.
y= _[()T (2 + 1 —2r.r, cos 0 dit
The rOver will run away from the rElay.

Numerical Results

Guided by the suboptimal solution and the solution of the one — sided optimal
control problem, the differential game is solved using Isaacs method [2], namely, the
retrograde integration of the characteristics’ equations (10). In the figures below, the
spatial results are shown. The following numerical results show the solution of the

differential game where T =0.25, o =1, e, =5 I, =land 6, =£.
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Spatial Results

Geometric-Relay
————— Shooting-Relay
0.2 Geometric-Rover
Shooting-Rover
0.1 Geometric-Midpoint
Shooting-Midpoint
X Base
0%
> \
\ A
0.1F | N
0.2
-0.3F ‘
r r r r r r r
0 0.2 0.4 0.6 0.8 1 1.2

Figure D. 3: Relative Spatial Results for T =.25, a=1 r_ =5, r, =land 6, =%

The following numerical results show the solution of the min-max problem where

T=49 a=1r1, =land §,=%.
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Spatial Results

04l Geometric-Relay
' —.——— Shooting-Relay
0.3 . P Geometric-Rover
TSt Shooting-Rover
0.2+ Geometric-Midpoint
Shooting-Midpoint
0.1 * Base
0% \
> \
0.1r <
T~
0.2
0.3r
0.4
\\
0.5 \
r r r r r r r r r
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure D. 4: Relative Spatial Results for T =1, a =1, r, =51, =land §,=%
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